Signal-Based Malware Classification Using 1D
CNNs

Jack Wilkie'", Hanan Hindy?, Ivan Andonovic', Christos
Tachtatzis!, Robert Atkinson'

*Jack Wilkie, jack.wilkie.2017@uni.strath.ac.uk.
!University of Strathclyde.
2Ain Shams University.

Abstract

Malware classification is a contemporary and ongoing challenge in cyber-security:
modern obfuscation techniques are able to evade traditional static analysis, while
dynamic analysis is too resource intensive to be deployed at a large-scale. One
prominent line of research addresses these limitations by converting malware
binaries into 2D images by heuristically reshaping them into a 2D grid before
resizing using Lanczos resampling. These images can then be classified based on
their textural information using computer vision approaches. While this approach
can detect obfuscated malware more effectively than static analysis; the process
of converting files into 2D images results in significant information loss due to
both quantisation noise, caused by rounding to integer pixel values, and the
introduction of 2D dependencies which do not exist in the original data. This
loss of signal limits the classification performance of the downstream model. This
work addresses these weaknesses by instead resizing the files into 1D signals which
avoids the need for heuristic reshaping, additionally these signals do not suffer
from quantisation noise due to being stored in a floating-point format. It is shown
that existing 2D CNN architectures can be readily adapted to classify these 1D
signals for improved performance. Furthermore, a bespoke 1D convolutional neural
network, based on the ResNet architecture and squeeze-and-excitation layers, was
developed to classify these signals and evaluated on the MalNet dataset. It was
found to achieve state-of-the-art performance on binary, type, and family level
classification with F1 scores of 0.874, 0.503, and 0.507, respectively, paving the
way for future models to operate on the proposed signal modality.

Keywords: Malware Classification, Malware Detection, Machine Learning,
Convolutional Neural Networks, Neural Networks, Computer Vision, MalNet

1 Introduction

Malware detection remains a critical challenge in cyber-security. While signature-based
classification is effective for known malware, it relies on handcrafted features which
are time-consuming and require expert knowledge to develop (Votipka et al. 2020;
Mohaisen et al. 2014). Furthermore, small changes to a malware’s source code can
greatly alter the compiled binary, allowing signature-based detection to be readily
evaded (Sathyanarayan et al. 2008). While dynamic analysis provides a more in-
depth inspection, its resource intensive nature limits its applicability at scale, posing
significant challenges for cybersecurity defences that require rapid and accurate malware
assessments.

Recent advances in machine learning have offered promising avenues for enhanc-
ing malware classification. Specifically, the transformation of malware binaries into
visual image representations, known as byteplots, has emerged as a novel method
that leverages computer vision techniques to classify malware samples based on the
byteplot’s textural information (Conti et al. 2008; Nataraj et al. 2011a). This approach
boasts numerous advantages, removing the need to develop hand-crafted features
and malware signatures, moreover the malware images are quick to generate allowing
these methods to be deployed at scale. Significantly, this approach has enabled deep
learning classification models which have been shown to be robust to both polymor-
phic malware variants and obfuscation techniques such as section reordering and file
packing (Nataraj et al. 2011a,b; A. et al. 2023).

However, this approach is not without its limitations. The process of converting
malware files into 2D images introduces significant information loss due to quantisation
noise when rounding to integer pixel values and, more significantly, the artificial
introduction of 2D spatial dependencies, which can distort the original binary structure
and degrade the performance of downstream classification models.

Addressing these limitations, this work proposes an innovative approach that resizes
the malware binaries into 1D signals instead of 2D images. This method not only
maintains the integrity of the original data structure, but also retains more of the
binary’s information, improving the signal-to-noise ratio of the resized signal. It is
shown that existing 2D models can be adapted to operate on 1D data for improved
performance with no additional parameters or computation. Furthermore, a bespoke
Convolutional Neural Network (CNN) architecture is proposed to classify the 1D signal
data. This architecture is adapted from the pre-activation ResNet architecture (He
et al. 2016), however, also incorporates squeeze-and-excitation (SE) layers (Hu et al.
2018) and the GELU activation function (Hendrycks and Gimpel 2023).

While the proposed pipeline can be applied to arbitrary file binaries, this work
focuses on the classification of Android DEX files due to the availability of a large-scale
dataset for training and evaluation, and the substantial adoption of third-party appli-
cations in the Android ecosystem. Despite this, the proposed signal-based classification
method is experimentally shown to be more effective than the equivalent image-
based approaches on Windows’ EXE binaries, making it an attractive replacement to
image-based models.

Comprehensive evaluation on the MalNet dataset (Nataraj et al. 2011a) demon-
strates that the proposed approach not only surpasses 2D image-based models but

also achieves state-of-the-art performance on binary, type, and family level malware
classification. This work paves the way for new malware classification systems which
rely on 1D signal-based representations.

The core contributions of this work can be summarised as follows:

1. A resizing approach is proposed which keeps the file binaries in a 1D format,
improving the signal-to-noise ratio when compared to resizing as a 2D image.
Additionally, by storing the signals in a floating-point format quantisation error is
avoided.

2. A procedure to adapt arbitrary 2D CNNs to operate on the 1D signal representations
is proposed. The 1D models were compared to their equivalent 2D models in a
malware classification task on the MalNet and the Microsoft malware classification
datasets. It was found that for an equal number of parameters and compute the 1D
models outperform their 2D counterparts.

3. A bespoke 1D CNN model is proposed to classify the malware signals. The model
is based on the pre-activation ResNet architecture with GELU activation functions
and SE layers. The proposed model outperforms state-of-the-art approaches in
binary, type, and family classification on the MalNet dataset.

This work is organised as follows: related works are outlined in Section 2, includ-
ing previous approaches to malware classification, byte plot images, and previous
approaches utilising 1D convolutions for malware classification. Section 3 provides
overview and explanation of the proposed methods including generating the signal files
from binaries, and the novel CNN architecture used. The proposed approach is experi-
mentally evaluated in Section 4, with additional results and ablations being provided
in Section 5. Finally, relevant discussion and conclusions are provided in Section 6.

2 Related Works

In this section, a summary of previous works is given. Existing malware classification
approaches are described in Section 2.1, where methods such as static analysis, dynamic
analysis, and machine learning approaches are detailed. Section 2.2 covers the history
and application of byteplot representations, including their uses in manual binary
inspection and as an input to machine learning models. Finally, Section 2.3 describes
other works which have used 1D convolutions for malware classification.

2.1 Malware Classification

The classification of malware involves the extraction of distinctive features that charac-
terise the contents and functionalities of malicious software. These features are typically
gathered through static or dynamic analysis methods. Static analysis extracts features
directly from the malware files, such as strings, n-grams, and byte-entropies (Abusitta
et al. 2021). Conversely, dynamic analysis, while more time-intensive, provides deeper
insights into the malware’s functionalities. This method entails running the malware
within a controlled virtual environment to observe behaviours such as network activity,
permissions, and API calls. This approach is particularly effective against malware
that employs obfuscation techniques to evade detection (Abusitta et al. 2021).

Signature-based detection remains a prevalent method in antivirus engines, where
human analysts identify common properties among malware samples to define a
malware signature. Such signatures may include filenames, byte sequence regular
expressions, or printable strings (Schultz et al. 2001). Despite the high precision
of signature-based systems, they are susceptible to evasion through anti-analysis
techniques including obfuscation, polymorphism, packing, and code reordering. These
techniques alter the malware binaries substantially with minimal changes to their
functionalities, thereby evading traditional detection methods (Deng and Mirkovic
2022).

In response to the limitations of signature-based detection, researchers have increas-
ingly turned to machine learning classifiers capable of generalisation. Various gradient
free methods have been applied such as Support Vector Machines (SVMs) (Rezende
et al. 2018), Markov Chains (Anderson et al. 2012), and K-Nearest Neighbours Clas-
sifiers (KNNs) (Nataraj et al. 2011a; Rezende et al. 2018), as well as deep models
such as CNNs (Freitas et al. 2021) and Vision Transformers (ViTs) (Seneviratne
et al. 2022a). One prevalent method involves restructuring and resizing the binary
data into a 2D image which can then be classified using computer vision approaches,
this has numerous advantages such as being quick to generate and being resistant to
obfuscation (Nataraj et al. 2011a).

2.2 Byteplot Visualisation

The visualisation of binaries as byteplots was initially proposed as a tool for security
analysts, wherein each byte was represented as a pixel with an intensity corresponding
to the integer value of the byte (Conti et al. 2008). These byteplots were displayed in
a window of fixed width, allowing users to scroll through the entire binary file. It was
qualitatively demonstrated that properties of the binary could be inferred from the
textural information of the plots. For instance, network traffic of varying length packets
manifested as an irregular texture, and hidden messages could be discerned in MP3
files. This enabled analysts to identify regions of interest without the need for manual
examination of the binaries. Subsequent research extracted statistical information
from byteplots and utilised it to automatically label primitive data types and sections
within a binary file (Conti et al. 2010).

Byteplots have since found utility in computer vision-based classification approaches,
where binary files are reshaped into a 2D grid. The width of this grid varies depending
on the size of the binary, according to a heuristic resizing rule. The resulting 2D grid is
then resized into a 2D image suitable for classification (Nataraj et al. 2011a). Initially,
filters were manually designed to extract feature vectors from these images, which
could then be classified using SVMs (Rezende et al. 2018) or KNNs (Nataraj et al.
2011a). However, the success of CNNs on byteplot images has obviated the need for
manual feature extraction (Rezende et al. 2018; Kalash et al. 2018; Llaurad6 2016).

While it is common to generate greyscale byteplot images using standard procedures,
several variations have been proposed. One approach seeks to enhance the images
by incorporating colour channels to encode semantic information (Gennissen and
Blasco 2017), or by encoding multiple bytes into a single pixel (Huang and Kao 2018).
Another variation suggests replacing the commonly used heuristic reshaping rule with

a method that shapes the data into a 2D grid with a width determined by the length
of the longest section in the binary. However, this results in significant padding in rows
corresponding to smaller sections (Chong et al. 2022).

Due to the success of computer vision-based classification, byteplot representations
have been widely adopted in research (Priya and Sathya Sofia 2023). Notably, the
Mallmg dataset contains 9,339 byteplot images from 25 different families (Nataraj et al.
2011a). Another dataset, MalNet, comprises over 1 million byteplot images extracted
from the DEX files of Android APKs (Freitas et al. 2021). Additionally, converting
binaries into byteplot images is a commonly used preprocessing step (Kalash et al. 2018;
Llaurado6 2016; Lu et al. 2022) in works utilising the Microsoft Malware Classification
dataset (Ronen et al. 2018).

2.3 1D CNNs for Malware Classification

1D CNNs have been utilised for malware classification, though not by operating on
a 1D signal representations. A typical approach involves extracting tabular features
through static or dynamic analysis. Common features can include n-grams (Liu et al.
2017; Yeboah and Musah 2022), header-based features (Damasevicius et al. 2021),
structural entropy (Paik et al. 2022; Kim et al. 2023), and byte/opcode frequen-
cies (Liu et al. 2017; Paik et al. 2022). These features are then used as input for 1D
CNNGs, either as standalone classifiers (Bovenzi et al. 2022) or within an ensemble of
models (Damasevicius et al. 2021).

1D CNNs have shown prominence in processing sequences derived from API calls
or opcode features. Initially, data is collected as strings via disassembly (Llaurado
2016; McLaughlin et al. 2017; Yeboah and Musah 2022; Wang et al. 2021; Safa et al.
2019; Dib et al. 2021) or dynamic analysis (Schofield et al. 2021). These strings are
then parsed to identify a discriminative subset of opcodes or API calls, creating a short
sequence for each sample. The sequences are then encoded using methods such as
one-hot encoding (Schofield et al. 2021; Schofield 2021; McLaughlin et al. 2017), look
up tables (McLaughlin et al. 2017), GloVe (Wang et al. 2021), word-2-vec (Yeboah and
Musah 2022; Llaurad6 2016) or frequency based features (Schofield 2021) to obtain a
sequence of embeddings which can then be classified using a shallow CNN (Schofield
2021; McLaughlin et al. 2017; Wang et al. 2021; Schofield et al. 2021), or convolutional
layers followed by a recurrent model (Alsulami and Mancoridis 2018; Safa et al. 2019;
Zyout et al. 2023; Dib et al. 2021). However, these data processing methods are time-
consuming, and often these models underperform compared to byteplot or handcrafted
feature-based approaches (McLaughlin et al. 2017).

Despite the prevailing preference of 2D byteplot images in machine learning based
approaches on raw binaries, some works have shown evidence of 1D convolutions
providing performance benefits. One work has shown that the convolutional filters in
2D CNNs trained on byteplot images show a preference towards row-based features
with column based features being less impactful on the binaries predicted label (Chong
et al. 2022). Additionally, it was found that by ensembling a 2D CNN with features
extracted by a single 1D convolutional layer operating on flattened byteplots provided
performance benefits over using a 2D model alone (Chong et al. 2022). Other works
have also performed 1D convolutions on flattened byteplot images, finding performance

2D CNN
A

'

Signal f 1D CNN] (File Classification

Raw Binary

—> i > 5
[01000111...] Hl — 1D CNN @A

J

Fig. 1 High-level overview of the proposed system. File binaries are initially converted into 1D signals,
which preserve more of the file information, before being classified using a 1D CNN. Additionally,
existing 2D CNNs can be adapted to operate on the 1D signals by modifying the convolution kernels.

benefits in eliminating the vertical dimension in the convolutions (Kim et al. 2023).
Although these works have used relatively shallow networks, it has been attempted
to train a Vision Transformer on entire 1D binaries, however, the authors found this
impractical due to the file sizes involved and instead switch to a 2D byteplot based
approach (Lu et al. 2022). Other attempts have dealt with this file size constraint by
operating only on the first or last N bytes in a file (Hasegawa and Iyatomi 2018) or
by identifying discriminate regions within a binary and extracting sub-sequences for
classification (Kim et al. 2022). This paper presents the first work to train deep 1D
CNNs on entire binaries resized into 1D signals, marking a novel approach in machine
learning based malware classification.

3 Proposed Approach

A high-level schematic of the proposed approach is provided in Figure 1. This repre-
sents an approach to perform malware classification based on 1D signal representations
of binary files. These representations are produced by resizing binaries into 1D signals
using Lanczos resampling as described in Section 3.1. To classify the signal representa-
tions a methodology is presented in Section 3.2 to convert existing 2D CNNs to operate
on 1D data by flattening the convolution kernels and squaring the stride values. This
technique is applied to the ResNet model along with several modifications to develop
a bespoke architecture adept at classifying the generated signals in Section 3.3.

3.1 Data Processing and Resizing

Instead of processing malware binaries into byteplot visualisations, this work converts
them into signal representations. For the purposes of this work the term “signal” is
used to refer to 1D inputs to machine learning models, in order to differentiate from
2D images. Initially, the binary file is transformed into an integer representation where
each byte is represented by an integer in the range [0, 255], corresponding to the byte’s
numerical value when interpreted as an integer.

Lanczos Resampling Pixel Colouring

Heuristic Reshaping vl @

[12,255,10,0,28...,
165,91,89,22.0,...,
2,117,1154,8,...,
19,18,51,24,55,....

Raw Binary
[01000111...]

Integer Array

[71,252,0,0,8,...]

Min-Max Normalisation
[0.27,0.99, 0., 0.,0.031,...]

Lanczos Resampling
Y

Fig. 2 The signal processing procedure use to generate both byteplot images (top path) and signal
representations (bottom path). The signals are generated in a similar manner to bytplot images but
do not require the reshaping or quantisation steps which introduce unnecessary noise when generating
byteplot images.

As depicted in Figure 2, generating a byteplot image involves arranging integer
values into a 2D grid using a heuristic resizing rule. However, the proposed data
processing method diverges at this point by employing min-max normalisation. Here,
each integer value is divided by 255, resulting in a floating-point representation in the
range [0, 1]. By maintaining the data’s original 1D structure the signal representations
avoid the introduction of 2D spatial dependencies which result in lower quality resizing
and diminished downstream classification performance.

Similar to byteplot visualisations, the Lanczos filter is used to resample the data.
This is due to its ability to preserve textural information in malware binaries useful for
classification. Although signals can be resampled to arbitrary size, this work resamples
to a length of 65536, equal to the number of pixels in a 256 x 256 image. This allows for
fair comparison between the proposed approach and existing image-based classifiers.
Post-resizing, the signal remains in floating-point format, which avoids the quantisation
loss suffered by byteplot representations.

In contrast to byteplot visualisations, this work does not encode binary section
information as multiple channels; instead, a single channel is used. While encoding
information as colour channels is beneficial for visualisation purposes, it does not
enhance the performance of the downstream classifier despite resulting in additional
model complexity and data storage requirement (Freitas et al. 2021). The byteplot
visualisation of samples from the MalNet dataset and their corresponding signal
representations are shown in Figure 3. Correlation can be seen between the byteplot
image’s pixel intensity and the corresponding signal values. Notably regions of padding
appear as black regions in byteplot images and long 0 regions in the signal representation.
Before model training, the mean and standard deviation of the signal are calculated
on the training set, enabling z-normalisation of the signal.

0 10000 20000 30000 40000 50000 60000

0 10000 20000 30000 40000 50000 60000

Benign Adware
Benign Kyview

0 10000 20000 30000 40000 50000 60000

PR ———
Trojan Riskware
GingerMaster Artemis

Fig. 3 Comparison of byteplot images with the corresponding signal representation. Visual similarity
can be seen between the representations, most notably on areas of padding which appears as black
regions in the image and 0 regions in the signals. The captions show the type of malware (top) and its
family (bottom).

3.2 Converting Convolutions to One Dimension

Typical 2D CNN classifiers are unable to process the proposed 1D signal representations
of file binaries, necessitating an architecture able to operate on these signals. Existing
approaches in other domains have attempted to adapt CNNs to 1D data by either
preserving the convolution size along a single dimension—for instance, converting a 2D
convolutional layer with a 3 x 3 kernel into a 1D convolutional layer with a kernel size
of 3 (Daly et al. 2023)—or by employing custom architectures with kernel sizes tailored
to the specific characteristics of the input data (Mekruksavanich and Jitpattanakul
2022). However, these adaptations do not result in 1D architectures equivalent to
their 2D counterparts, with discrepancies in model structure, parameter count, and
computational requirements when compared to their 2D equivalents.

This work instead proposes a novel approach to convert 2D CNNs into 1D CNNs
that preserves the network architecture and key properties such as parameter count
and computational cost. As illustrated in Figure 4, instead of modifying kernel sizes
arbitrarily, the kernels are flattened, maintaining the same number of parameters,
except across a single dimension. Additionally, the stride values are squared preserving
the downsampling ratio in convolutional layers (a stride of 2 across 2 dimensions
results in a total downsampling ratio of 4). By performing this transformation on all
2D convolutions in a model, existing CNN architectures can readily be adapted to the

1,1 |*1,2|*1,3|Zra|T1,5 kia|ki2|ki3
T3,1|®2,2|%2,3|®2,4 72,5 ka1 |ka 2|ke s Flatten Kernel k1 | k2 | k3 | kg | kg | kg | k7 | kg | kg ‘
Square Stride
*3,1|%3,2|%3,3|%3,4|%3,5 k3,1 |ka2|ks s _—
r4,1|®4,2|®4,3 (24,4 |45 vy | wp | wg | @y | a5 | @g |27 |25 | 2o |@10 m“‘
5,1 |*5,2|*5,3|%¢5,4|%5,5
2D Convolution 1D Convolution
Kernel = 3 x 3 Kernel = 9
Stride = 2 Stride = 4

Fig. 4 Conversion of a 2D CNN Kernel into a 1D CNN kernel. By flattening the kernels and squaring
the stride values across a 2D CNN, an equivalent 1D CNN can be found with the same number of
parameters and compute requirement. Here the kernel is represented by k, and the input is given as x.

0

£ el -2 O B S N IO (R E 2|8

/\/mspe‘spegé?éé‘s:%%
N =i < = = < I - - L = O - L < < = I) e

3 5 = & g % A g e) [) [% & & g

Input Signal 3 CRRCA RGN ECA NG s & & &% 2|19 | 7| ¢

(Bx1xL) 3 3 = 2 |& b NI ii 5

ResNet Stem ResNet Stage Classification Head

Fig. 5 Architecture of the proposed 1D ResNet. The model is based on the ResNet architecture with
a deep stem, however, 2D convolutions are replaced with 1D Convolutions. Additionally, the kernel is
flattened and the stride is squared for each convolution.

proposed signal representations. The 1D models show improved performance for no
extra parameter or compute cost over their 2D counterparts.

3.3 Model Architecture

To demonstrate the efficacy of malware classification using signal representations, the
bespoke 1D CNN architecture shown in Figure 5 was developed by converting the
2D ResNet architecture (He et al. 2015) to operate on 1D signals. To modernise the
architecture, the ReLLU activation functions were replaced with GELU and squeeze-and-
excitation (SE) layers were introduced in the PRE-SE configuration (Hu et al. 2018).
The network has three stages: the stem, which performs initial feature extraction whilst
spatially downsampling the input signal; the stage, which applies residual learning
to progressively learn a feature map; and the classification head, which predicts the
binary’s class label based on the extracted features.

The model’s stem utilises the deep architecture introduced by the ResNet-D mod-
els (He et al. 2018), employing a hierarchical sequence of convolutional, normalisation,
and downsampling operations to extract features from the input signal whilst spatially
downsampling it to improve downstream efficiency. It consists of three convolutions:
two initial convolutions, each followed by Group Normalisation (GroupNorm) and a
GELU activation function; and a third convolution which is followed by max pooling.
The first convolution employs a stride of 4, reducing the input signal’s length by a
factor of four whilst projecting it to 32 channels. The second convolution maintains
the spatial dimensions and channel count, refining feature representations through
additional non-linear transformations. A final convolutional layer then expands the
channel depth to 64, followed by a max pooling operation with a stride of 4, further
downsampling the signal length by a factor of four. A kernel size of nine is used across
the max pooling and convolutions in the stem.

The ResNet stage consists of 4 stage blocks containing a series of the residual
blocks shown in Figure 6 (left). These blocks are 1D adaptations of the pre-activation
ResNetV2 architecture (He et al. 2016) with the aforementioned modernisations of the
GELU activation and SE layers. Each residual block begins with GroupNorm, followed
by a GELU activation and SE layer, after which the signal is processed through
two parallel branches. The main branch employs separable convolutions, beginning
with a pointwise convolution (followed by GroupNorm and GELU) which reduces the
dimensionality of the feature map; before a depthwise convolution (also followed by
GroupNorm and GELU) processes the signal in the lower dimensionality feature space.
A second pointwise convolution then restores original number of channels. Meanwhile,
the residual branch resamples the signal to match the shape of the main branch using
average pooling (to resize the spatial dimension) and a pointwise convolution (to match
the number of channels). The two branches are then reconciled using a pointwise
addition. Importantly, the first residual block in each stage block downsamples the
length of the signal by a factor of 4, using the stride parameter of the depthwise
convolution, and doubles the number of channels using the pointwise convolutions. This
progressive downsampling allows the model to learn semantic, hierarchical features as
the signal propagates through the network.

The SE layers are used to provide channel-wise attention to the residual block.
As illustrated in Figure 6 (right), global average pooling is used to get a compressed
representation of the feature map in the current layer of the network. This pooled
representation is then passed through an MLP, utilising the bottleneck architecture,
to compute a scaling vector used gate the feature channels. By scaling the input to
the convolutions, the model is able to exploit input dependant filters.

Finally, the classification head is used to predict the class of the input binary
using the feature map learned by the ResNet stage. The extracted features are first
normalised using GroupNorm. Following this, a GELU activation is used to allow the
classification head to make predictions based on a non-linear combination of features.
Finally, average pooling is used to eliminate the length dimension of the signal, with
the remaining features being classified using a linear layer.

10

l

GroupNorm

GELU

Squeeze Excitation

Pointwise ConvlD

GroupNorm

GELU ‘ Channel Average Pooling ‘

l

Linear Downsampling

Average Pooling

Pointwise Conv 1D l
RELU
Depthwise ConvlD
GroupNorm K K
Linear Upsampling

GELU l
l ‘ Sigmoid ‘

Pointwise Conv 1D i
Pointwise Addition] —»‘ Channelwise Multiplication ‘

! !

Fig. 6 Architecture of the residual block. Left: The blocks use the pre-activation ResNet architecture
with the addition of the GELU activation function and a squeeze-and-excitation layer. Right:
architecture of a squeeze-and-excitation block used to provide input dependant convolution filters.

4 Evaluation

This section experimentally evaluates this works primary contributions. Initially, the
evaluation datasets and experimental procedures are detailed in Section 4.1 and
Section 4.2, respectively. Next the performance impact of transitioning from a byteplot
representation of a binary to a signal-based one is measured in terms of both signal loss
and performance impact on downstream models in Section 4.3. Section 4.4 compares
various approaches to convert 2D convolutional filters to operate on 1D data. Finally,
Section 4.5 compares the proposed model to current SOTA approaches on the MalNet
dataset in binary, type, and family level classification.

4.1 Datasets

This work primarily uses the MalNet Image dataset (Freitas et al. 2021). This is the
largest open source malware datasets containing 1,262,024 Android malware samples
across 696 families and 47 types of malware, including benign samples. While the

11

MalNet dataset is provided as byteplot images, the file hashes can be used to download
the original APK files from Androzoo (Allix et al. 2016). After downloading the
corresponding APKs the binary sequences from the DEX files were extracted and
converted to a signal representation using the methodology described in Section 3.1.

To demonstrate the applicability of the proposed methods to other file formats the
Microsoft malware classification dataset (Ronen et al. 2018) was used. This dataset
contains the raw binaries and dissassembled opcode of EXE files across nine malware
families. While this dataset is used to show the applicability of the proposed approach
to windows EXE files it is a much smaller scale than the MalNet dataset, containing
only 10,868 samples, and thus has less sample variety. Consequently, the dataset has
been largely solved with existing models achieving near perfect performance (Gibert
et al. 2020). For this reason, the proposed 1D CNNs are compared to their equivalent
2D models on this dataset but are only compared to SOTA approaches on the Malnet
dataset.

While other malware classification datasets exist, they cannot be used in this
work as they do not provide the original file binaries. Although commonly used
the Mallmg (Nataraj et al. 2011a) and the VirusMNIST (Noever and Noever 2021)
datasets provide only the image representation of the files, making it impossible to
convert the samples into a signal representation. Other datasets such as the EMBER
dataset (Anderson and Roth 2018) provide the data as a set of tabular features. All of
these datasets are also significantly smaller than the MalNet dataset.

4.2 Experimental Details

Models trained on the MalNet dataset utilise the predefined 70/10/20 train, test, and
validation sets for each task granularity. During training, models were evaluated at
each epoch on the validation set, with the checkpoint exhibiting the best validation
performance being selected for final evaluation on the test set. For the Microsoft
Malware Classification dataset, due to the unavailability of public test set labels, the
training set was split into an 80/20 train-validation split, with validation results being
reported.

Two distinct training recipes were employed in this work. The standard recipe was
derived from previous studies (Freitas et al. 2021) and is used for a direct comparison
with existing literature when evaluating the efficacy of transforming the data into a
1D signal-based representation. It trains the model for 100 epochs using the Adam
optimiser with a learning rate of 0.001 and a batch size of 64. Additionally, an improved
training recipe was introduced to compare the proposed model’s performance against
current state-of-the-art (SOTA) approaches. The improved recipe incorporates several
enhancements, including linearly scaling class balancing strength by a factor of 0.5,
applying weight decay with strength 0.005, as well as label smoothing with an alpha
value of 0.1, and using a warm-up cosine schedule for the learning rate. In the improved
training recipe, models are initially trained using the stated hyperparameters for 50
epochs. Subsequently, the class balancing weights are removed, and the model is fine-
tuned for a further 10 epochs with a learning rate which is reduced by a factor of 10.
This improved recipe allows models to achieve improved performance despite training
for fewer epochs.

12

In the remainder of this work ResNet models trained on signal data are referred to
as ResNet1D models to distinguish them from traditional image-based ResNets. The
standard notation is retained to denote the ResNet’s size; for example, ResNet1D152
refers to a ResNet152 model adapted for signal data. The original ResNet block is
denoted as the V1 architecture (He et al. 2015), while the bottleneck architecture is
referred to as V1.5 (He et al. 2015), and the pre-activation architecture is labelled
as V2 (He et al. 2016). SE denotes the inclusion of squeeze-and-excitation modules,
and D indicates the use of a deep ResNet stem. For instance, a ResNet1DV2-152D-SE
model refers to a ResNet152 model utilizing the pre-activation architecture, trained on
signal data, and incorporating both a deep stem and squeeze-and-excitation modules.

4.3 Loss of Information in 2D Images

In this section, the effect of resizing binaries into 1D signals as opposed to 2D images
is explored. To provide a quantitative comparison of the resizing methods, the mean
squared error (MSE) and signal-to-noise ratio (SNR) was measured at each stage of
the resizing process.

To assess resizing noise, the binaries were resized to a length of 65536 for signals
or reshaped into a grid and resized to 256 x 256 for images. The downsampled
binary was then upsampled back to its original size, with the MSE and SNR being
calculated between the original and the resized binary. Quantisation noise was measured
by first resizing the binary in either 1D or 2D and then quantising to the nearest
integer, comparing quantised signal to the resized signal. The quantised signals were
subsequently upsampled back to their original sizes and compared to the original
binaries to measure the total noise incurred from the combination of resizing and
quantisation.

The mean resizing and quantisation noise for both images and signals is presented in
Table 1 for the MalNet dataset and in Table 2 for the Microsoft Malware Classification
dataset. The results indicate that resizing noise is more significant when the data is
resized into 2D images. Although on the Microsoft Malware dataset quantising signals
introduces more noise than quantising image representations, it should be noted that
the signal representations are not quantised when used to train a model, thus only
resizing noise is suffered. Consequently, the total noise in the image representations
is the cumulation of resizing and quantisation noise, whereas for signals, it is only
resizing noise. The results demonstrate that for both Android APKs and Windows’
EXE files, the proposed signal representations introduce significantly less noise during
preprocessing.

Reduced preprocessing noise does not necessarily guarantee improved performance
when training a classification model. To evaluate this, the performance of various 2D
CNNs, trained on images, were compared to their 1D equivalent models, trained on
signal representations. The performance of both sets of models on the MalNet type
dataset is shown in Table 3 with the comparison being extended to the Microsoft
Malware Classification dataset in Table 4. It is evident that despite having the same
computational requirements and number of parameters, the 1D models outperform
their 2D equivalent models, with each model achieving a higher F1 score when trained
on 1D signals across both Android APK and Windows’ EXE data.

13

Table 1 Sources of noise in the binary resizing process on
the MalNet dataset.

Signal Loss Type SNR (dB) MSE
Image Resizing -17.6461 3757.7163
Image Quantisation 35.9104 1.2992
Image Resizing + Quantisation -17.6439 3755.8519
Signal Resizing -16.9099 3238.4049
Signal Quantisation 40.2085 1.1551

Signal Resizing + Quantisation -16.8438 3240.5584

Table 2 Sources of noise in the binary resizing process on
the Microsoft Malware Dataset.

Signal Loss Type SNR (dB) MSE
Image Resizing -19.3484 4937.4840
Image Quantisation 44.6832 0.7755
Image Resizing + Quantisation -19.3483 4937.3816
Signal Resizing -18.5801 4133.1473
Signal Quantisation 42.2795 3.2579

Signal Resizing + Quantisation -18.5871 4138.1813

Table 3 Comparison between 1D and 2D CNNs on type level classification when trained with
identical hyperparameters.

Model F1 Score Precision Recall Parameters (M) Compute (GFLOPs)
ResNet18 467 .556 424 11.2 2.3
ResNet50 A79 .066 441 23.6 9.9
DenseNet121 A71 .558 428 7.0 3.6
Densenet169 ATT 573 .433 12.6 4.3
MobileNetV2(x.5) .460 .547 424 0.7 0.1
MobileNetV2(x1) 453 027 419 2.28 0.4
ResNet1D18 .482 .598 432 11.2 2.3
ResNet1D50 .486 .585 .443 23.6 9.9
DenseNet1D121 .499 574 .466 7.0 3.6
Densenet1D169 .488 .562 .452 12.6 4.3
MobileNet1DV2(x.5) 482 .048 458 0.7 0.1
MobileNet1DV2(x1) 481 .552 444 2.28 0.4

4.4 Adapting Convolutions to 1D Data

This section investigates methodologies for converting 2D CNNs to 1D models. Two
primary techniques were employed: the first preserves the original stride and kernel
sizes, while the second squares these values to account for the dimensionality reduction
when transitioning to 1D data. Alternatively, either the kernel size or the stride can
be squared independently, maintaining the original size of the other parameter.
When the kernel size is squared, this is equivalent to flattening the 2D kernel
into a 1D form, thereby preserving the same number of parameters. However, this

14

Table 4 Comparison of CNN architectures on the
Microsoft Malware dataset.

Model F1 Score Precision Recall
ResNet18 .976 971 .982
ResNet50 972 .968 977
DenseNet121 .978 976 .980
Densenet169 .981 983 .979
MobileNetV2(x.5) .956 .960 .953
MobileNetV2(x1) .958 .946 .982
ResNet1D18 .992 .993 .990
ResNet1D50 991 .990 .991
DenseNet1D121 .980 971 .992
Densenet1D169 .985 1980 .991
MobileNet1DV2(x.5) .984 .985 .982
MobileNet1DV2(x1) .989 975 .988

Table 5 Comparison of various approaches to convert 2D CNNs to 1D when training a ResNet18 on
MalNet type classification.

Squared Stride Squared Kernel F1 Score Precision Recall Parameters (M) Compute (GFLOPs)

False False .406 .598 .406 3.9 11.1
False True A71 561 434 11.2 32.6
True False 466 573 420 3.9 0.8
True True 482 .598 432 11.2 2.3

transformation also extends the kernel’s receptive field, making it sensitive to longer-
range dependencies along the single dimension. Squaring the stride preserves the overall
amount of downsampling after each ResNet stage block, thereby maintaining consistent
VRAM requirements and computational load per forward pass. In contrast, preserving
the original stride reduces the amount of downsampling, consequently increasing the
VRAM and computational demands of the model.

In Table 5 the model performance for each combination of 2D to 1D conversion
methodology is shown for a ResNet18 model trained on the MalNet type classification
dataset. Best performance was achieved when both the kernel sizes and stride values
were squared, this also produced a model with the same number of parameters and
compute requirements as the original 2D model. Flattening the kernel sizes appeared
to have more of an impact on model performance than squaring the stride values.
Additionally, squaring the stride improved performance while maintaining the same
degree of downsampling as 2D models, meaning that training the model required the
same amount of VRAM and compute per forward pass.

4.5 Comparison to Existing Models

The performance of the proposed approach was evaluated using precision, recall, and
macro-averaged F1 score across binary, type, and family level classification tasks on
the MalNet dataset. A ResNet1DV2-152D-SE model, trained with the improved recipe,
was compared to three popular convolutional architectures: ResNet, DenseNet, and
EfficientNet, as reported in the MalNet paper (Freitas et al. 2021). Additionally, it

15

Table 6 Performance comparison of the proposed approach with existing approaches on the MalNet
dataset across task granularities.

Model Binary Type Family
F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

ResNet1DV2-152D-SE 874 907 .846 .503 .643 .453 507 .580 .480
SHERLOCK .854 .920 .810 497 .628 447 491 568 461
ResNet18 .862 .893 .837 467 .556 424 454 538 423
ResNet50 .854 .907 .814 479 .566 441 .468 541 443
DenseNet121 .864 .900 .834 471 .558 428 461 .529 438
Densenet169 .864 .890 .841 ATT 573 433 .462 545 434
MobileNetV2(x.5) 857 .894 .827 460 547 424 451 528 423
MobileNetV2(x1) 854 .889 .825 452 .527 419 .438 532 .405

was compared to the current SOTA model, SHERLOCK, which employs a ViT-B
pretrained using masked autoencoding (Seneviratne et al. 2022b). Due to the recency
of the MalNet dataset these baselines encompass all models currently benchmarked.

The performance comparison results, presented in Table 6, demonstrate the strong
performance of the proposed model. The results indicate that the proposed model out-
performs all baselines across all three classification granularities in terms of F1 score,
thus achieving SOTA performance. Furthermore, the proposed model surpasses all
baseline models in terms of recall and precision for both type and family classification
tasks. While the proposed approach is outperformed by SHERLOCK in precision for
binary classification, this can be attributed to the precision-recall trade-off, where a
model’s recall can be sacrificed to improve its precision and vice versa. While SHER-
LOCK favours precision, ResNet18 favours recall, making it feasible to individually
outperform each model but challenging to surpass both models on both metrics simul-
taneously. However, the overall performance, as quantified by the F1 score, indicates
the proposed model’s superior overall performance compared to the baselines in binary
classification. Adjusting the model’s decision boundaries to make decisions closer to
the marginal label distribution could potentially enhance its precision at the expense
of recall.

5 Additional Results and Ablations

The proposed ResNet1DV2-152D-SE model was shown to achieve state-of-the-art
performance on the MalNet dataset. This section provides additional analysis and
examines the contribution of various design decisions to the proposed model’s per-
formance. Section 5.1 begins by comparing the performance of various residual block
architectures. Next, architectural design choices are evaluated with various ResNet
stems and activation functions being compared in Section 5.2 and Section 5.3, respec-
tively. The input representation is analysed in the following sections, with Section 5.4
examining the choice of resampling filter and Section 5.5 investigating the length of
the input signals. Performance at different model sizes is compared in Section 5.5.
Finally, Section 5.7 examines the trade-off between precision and recall by analysing
the precision-recall (PR) curves of ResNet1DV2-152D-SE and SHERLOCK.

16

Table 7 Performance comparison of different residual blocks when used in a ResNet1D18 trained on
MalNet type classification.

Model Architecture F1 Score Precision Recall Parameters (M) Compute (GFLOPs)

ResNetV1 518 .645 464 11.2 2.3
ResNetV1.5 .520 .669 457 14.0 5.4
ResNetV2 510 .619 461 14.4 5.4
ResNetV2SE 512 .632 459 21.0 5.4

Table 8 Performance comparison of stems when used in a ResNet1DV2-152-SE trained on MalNet
type classification.

Stem Architecture F1 Score Precision Recall Parameters (M) Compute (GFLOPs)
Standard .506 591 .465 106.8 29.4
Deep .503 .643 453 106.8 29.8

5.1 Choice of ResNet Architecture

The performance of various residual block architectures is compared in Table 7.
Specifically, the original ResNet block is evaluated alongside the bottleneck block, as
well as the pre-activation block, both with and without squeeze-and-excitation modules,
when incorporated into a ResNet1D18 model. While the ResNetV1.5 architecture
achieved the best performance; adding SE layers to the ResNetV2 architecture resulted
in an improvement in the model’s F1-score and precision. This enhancement resulted in
a marginal increase in computational overhead, but a large increase in model parameter
count.

5.2 Effect of Model Stem

The effect of replacing the initial convolution at the start of the ResNet with the deep
stem containing multiple convolutions is shown in Table 8, where a ResNet1DV2-152-SE
model was benchmarked on MalNet type classification with both a deep stem and with
the original convolution. The deep stem improved the precision of the model, although
this came at the expense of recall and F1 score. Additionally, the deep stem introduced
a marginal increase in the number of parameters and a slight computational overhead.

5.3 Choice of Activation Function

The proposed model replaces the ReLU function, which is typically used with ResNet
architecture, with the GELU activation function. The impact of this on model perfor-
mance is shown in Table 9, where a ResNet1DV2-152D-SE model is trained using each
activation function with the improved training recipe on MalNet type classification.
The GELU activation function produced a high precision model, however, this came at
the expense of recall, F1 score, and a marginal increase in computational overhead. The
reason for this performance difference may be due to the GELU activation function
learning smoother decision boundaries resulting in more reliable predictions.

17

Table 9 Performance comparison of ReLU and GELU activations when used in a
ResNet1DV2-152D-SE for MalNet type classification.

Activation F1 Score Precision Recall Parameters (M) Compute (GFLOPs)
ReLU .509 .580 473 106.8 29.8
GELU .503 .643 453 106.8 29.8

Table 10 Performance comparison of Resnet1D18
models when trained on signals generated using various
resizing filters.

Activation F1 Score Precision Recall
Lanczos .518 .645 .464
Nearest Neighbour .450 618 391
Cubic .449 .623 .387
Linear 287 b17 227

5.4 Choice of Resampling Filter

The Lanczos filter employed by this work has been widely adopted in prior works
utilsing byteplot images; however, it was originally developed for natural images and
thus may not be the ideal resampling filter for byte data. To evaluate its effectiveness,
a ResNet1D18 model was trained MalNet type level classification using signal repre-
sentations resampled using various filters. The results, given in Table 10, show that
Lanczos resampling outperforms nearest neighbour, linear, and cubic resampling.

The superior performance of Lanczos resampling suggests that discriminative
features in byteplot signals may reside in higher frequency components. Since the
Lanczos filter preserves more high-frequency content due to its sinc-based formulation,
it is better able to retain fine-grained variations in byte transitions that may be
informative for classification. This implies that abrupt changes in byte values, which
manifest as high-frequency components in the signal domain, are likely important for
distinguishing malware types.

5.5 Choice of Signal Length

In this work’s main evaluation, signal representations were generated by resizing file
binaries to a length of 65536. This was chosen to allow for comparison with existing
models trained on the MalNet dataset which consists of byteplot images resized to
256 x 256 (65536) pixels. In Table 11 the performance of a ResNet1D18 model on
MalNet type classification is shown when trained on malware signals resized to various
lengths. It can be seen that the F1 score, precision, and recall monotonically increase
with signal length. This trend can be attributed to reduced information loss in longer
signals, which retain more of the original binary’s structure. However, this benefit
comes at the cost of increased storage requirements as well as higher computational
demands during both training and inference.

18

Table 11 Performance comparison ResNet1D18 models when trained on
signal representations of varying length on MalNet type classification.

Signal Length F1 Score Precision Recall Compute (GFLOPs)

256 .018 017 .021 0.01
1024 .034 .169 .034 0.03
4096 .106 .308 .087 0.1
16384 174 387 135 0.6
65536 .518 .645 464 2.3

Table 12 Performance comparison of varying sizes of ResNet1lD when trained on MalNet type
classification.

Model Parameters (M) Compute (GFLOPs) F1 Score Precision Recall
ResNet1D18 11.2 2.3 .018 .645 464
ResNet1D34 21.3 4.7 .520 .643 463
ResNet1D50 23.6 9.9 .008 .635 452
ResNet1D101 42.6 19.6 .504 .655 444
ResNet1D152 58.2 29.3 .501 .629 450

5.6 Parameter Sensitivity Analysis

The impact of the number of parameters on model performance is shown in Table 12,
where the performance of each size of ResNet model is evaluated on MalNet type
classification. Interestingly, small models appear to outperform their larger counterparts.
This is hypothesised to be due to resizing file binaries significantly reducing the
information in the input signal. As a consequence, the model performance becomes
heavily dependent on signal length, with more parameters only resulting in increased
overfitting.

5.7 Precision Recall Trade-off

In Section 4.5, it was noted that while ResNet1DV2-152D-SE outperforms SHERLOCK
in terms of recall, it exhibits lower precision. This was attributed to the trade-off
between precision and recall, whereby altering a model’s decision threshold can improve
precision at the expense of recall and vice-versa. This trade-off can be analysed using
the PR curve, which visualises model performance across different decision thresholds.
To focus on practical deployment scenarios—where maintaining a reasonable level of
threat coverage is essential—the analysis was restricted to the region where recall is
greater than or equal to 0.5. The PR curves of the proposed model and SHERLOCK
are shown in Figure 7.

It can be seen that ResNet1DV2-152D-SE has a greater area under the PR curve
than SHERLOCK indicating superior overall performance across varying decision
thresholds. In particular, the decision threshold of ResNet1DV2-152D-SE can be
adjusted to give a recall value greater than 0.9 without a significant decrease in
precision, whereas operating SHERLOCK in this region would result in significant
precision degradation.

19

0.98 +

Precision

0.96 +

0.94 ResNet1DV2-152D-SE (AUC = .4983)
—— SHERLOCK (AUC = .0.4977)

0.5 0.6 0.7 0.8 0.9 1
Recall

Fig. 7 Precision-recall curves of ResNet1DV2-152D-SE and SHERLOCK on MalNet binary classifi-
cation.

In practical scenarios, achieving high recall ensures that more malware samples
are successfully detected, reducing the likelihood of missed threats. However, this
often comes at the cost of lower precision, leading to a higher false positive rate and
less reliable predictions. To balance these competing objectives, the model’s decision
threshold would typically be tuned on a held-out validation set to maximise recall
while maintaining an acceptable false positive rate. This approach ensures the model
remains effective in detecting malware without overwhelming analysts with excessive
false alarms.

6 Discussion and Conclusions

Previous applications of deep neural networks in malware classification overwhelmingly
preprocess the raw binaries into image representations known as byteplots. Computer
vision approaches such as CNNs and vision transformers trained on these byteplots
have shown competitive performance on malware classification tasks while also being
resilient to obfuscation techniques such as packing and polymorphism. However, the
byteplot representations used to train these models were initially designed to assist
human analysts in quickly identifying regions of bytecode of interest for manual
inspection and are not the ideal representation for training machine learning models.
This work instead proposes a change in paradigm where malware binaries are resized
in 1D into signal representations instead of images. These signal representations do
not require heuristic reshaping rules to convert them into a 2D structure, furthermore,
once resized they do not require quantisation into integer pixel values like images.
This work quantitatively shows that by excluding the heuristic reshaping and
quantisation steps, the proposed signal representations contain more information than
their image-based counterparts. Furthermore, by converting 2D computer vision models
to operate on 1D data, an equivalent model can be trained which has the same number
of parameters and compute requirement as its 2D counterpart but boasts superior

20

performance. This is shown to be true for both binaries obtained from android DEX
files and from Windows’ EXE files through a series of experiments on the MalNet
dataset and the Microsoft Malware classification dataset.

To demonstrate the proposed signal representation’s effectiveness, a novel 1D
CNN architecture was proposed. The CNN was based on the ResNetV2 architecture,
however, the 2D convolutions were replaced with 1D convolutions by the squaring
the kernel sizes and stride values. Additionally, squeeze-and-excitation blocks were
added to the model and the ReLU activation function was replaced with GELU. This
model was compared to state-of-the-art approaches in binary, type and family level
classification on the large-scale MalNet dataset. The proposed model achieved state-of-
the-art performance with F1 scores of 0.974, 0.503, and 0.503 on binary, type, and
family level classification respectively.

These results pave the way for future works to use signal-based models instead of
the current image-based models. By providing a method to adapt existing 2D CNNs
to operate on 1D data it is hoped that researchers favour using 1D equivalent models
for improved performance. In the future domain specific resampling methods could
be used to generate the signal representations instead of Lanczos resampling, which
was primarily intended for images. By preserving more relevant information from the
original binaries in the signal representations the performance of the 1D models could
be further improved. Additionally, it is hoped that future datasets will provide the raw
binaries of samples. This would encourage research into alternative file representations,
and allow the proposed approach to be evaluated on a greater variety of malware: for
example cross-platform and mixed-format malware.

Declarations

Conflicts of Interest/Competing Interests

The authors declare that they have no competing interests.

Availability of Data and Materials

The datasets used for this research are publically available.

References

A. DK, P. V, Yerima SY, et al (2023) Obfuscated malware detection in iot android
applications using markov images and cnn. IEEE Systems Journal 17(2):2756-2766.
https://doi.org/10.1109/JSYST.2023.3238678

Abusitta A, Li MQ, Fung BC (2021) Malware classification and composition analysis:
A survey of recent developments. Journal of Information Security and Applications
59:102828. https://doi.org/https://doi.org/10.1016/j.jisa.2021.102828, URL https:
//www.sciencedirect.com/science/article/pii/S2214212621000648

Allix K, Bissyandé TF, Klein J, et al (2016) Androzoo: Collecting millions of android
apps for the research community. In: Proceedings of the 13th International Conference

21

https://doi.org/10.1109/JSYST.2023.3238678
https://doi.org/https://doi.org/10.1016/j.jisa.2021.102828
https://www.sciencedirect.com/science/article/pii/S2214212621000648
https://www.sciencedirect.com/science/article/pii/S2214212621000648

on Mining Software Repositories. ACM, New York, NY, USA, MSR ’16, pp 468—
471, https://doi.org/10.1145/2901739.2903508, URL http://doi.acm.org,/10.1145/
2901739.2903508

Alsulami B, Mancoridis S (2018) Behavioral malware classification using convolutional
recurrent neural networks. In: 2018 13th International Conference on Malicious and
Unwanted Software (MALWARE), pp 103-111, https://doi.org/10.1109/ MALWARE.
2018.8659358

Anderson B, Storlie C, Lane T (2012) Improving malware classification: bridging
the static/dynamic gap. In: Proceedings of the 5th ACM Workshop on Security
and Artificial Intelligence. Association for Computing Machinery, New York, NY,
USA, AlSec ’12, p 3-14, https://doi.org/10.1145/2381896.2381900, URL https:
//doi.org/10.1145/2381896.2381900

Anderson HS, Roth P (2018) EMBER: An Open Dataset for Training Static PE
Malware Machine Learning Models. ArXiv e-prints arXiv:1804.04637 [cs.CR|

Bovenzi G, Cerasuolo F, Montieri A, et al (2022) A comparison of machine and
deep learning models for detection and classification of android malware traffic.
In: 2022 IEEE Symposium on Computers and Communications (ISCC), pp 1-6,
https://doi.org/10.1109/ISCC55528.2022.9912986

Chong X, Gao Y, Zhang R, et al (2022) Classification of malware families based on
efficient-net and 1d-cnn fusion. Electronics 11(19):3064

Conti G, Dean E, Sinda M, et al (2008) Visual reverse engineering of binary and data
files. In: Goodall JR, Conti G, Ma KL (eds) Visualization for Computer Security.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1-17

Conti G, Bratus S, Shubina A, et al (2010) Automated mapping of large binary
objects using primitive fragment type classification. Digital Investigation 7:S3—
S12. https://doi.org/https: //doi.org/10.1016/j.diin.2010.05.002, URL https://www.
sciencedirect.com/science/article/pii/S1742287610000290, the Proceedings of the
Tenth Annual DFRWS Conference

Daly G, Fieldsend J, Hassall G, et al (2023) Data-driven plasma modelling: Sur-
rogate collisional radiative models of fluorocarbon plasmas from deep generative
autoencoders. Machine Learning: Science and Technology 4. https://doi.org/10.
1088/2632-2153 /aced7f

Damasevicius R, Venckauskas A, Toldinas J, et al (2021) Ensemble-based classification
using neural networks and machine learning models for windows pe malware detection.
Electronics 10(4). https://doi.org/10.3390/electronics10040485, URL https://www.
mdpi.com/2079-9292/10/4,/485

22

https://doi.org/10.1145/2901739.2903508
http://doi.acm.org/10.1145/2901739.2903508
http://doi.acm.org/10.1145/2901739.2903508
https://doi.org/10.1109/MALWARE.2018.8659358
https://doi.org/10.1109/MALWARE.2018.8659358
https://doi.org/10.1145/2381896.2381900
https://doi.org/10.1145/2381896.2381900
https://doi.org/10.1145/2381896.2381900
https://arxiv.org/abs/1804.04637
https://doi.org/10.1109/ISCC55528.2022.9912986
https://doi.org/https://doi.org/10.1016/j.diin.2010.05.002
https://www.sciencedirect.com/science/article/pii/S1742287610000290
https://www.sciencedirect.com/science/article/pii/S1742287610000290
https://doi.org/10.1088/2632-2153/aced7f
https://doi.org/10.1088/2632-2153/aced7f
https://doi.org/10.3390/electronics10040485
https://www.mdpi.com/2079-9292/10/4/485
https://www.mdpi.com/2079-9292/10/4/485

Deng X, Mirkovic J (2022) Polymorphic malware behavior through network trace
analysis. pp 138-146, https://doi.org/10.1109/COMSNETS53615.2022.9668396

Dib M, Torabi S, Bou-Harb E, et al (2021) A multi-dimensional deep learning framework
for iot malware classification and family attribution. IEEE Transactions on Network
and Service Management 18(2):1165-1177. https://doi.org/10.1109/TNSM.2021.
3075315

Freitas S, Dong Y, Neil J, et al (2021) A large-scale database for graph representation
learning. arXiv:2011.07682

Gennissen J, Blasco J (2017) Gamut : Sifting through images to detect android malware.
URL https://api.semanticscholar.org/CorpusID:44430018

Gibert D, Mateu C, Planes J (2020) Hydra: A multimodal deep learning framework
for malware classification. Computers & Security 95:101873. https://doi.org/https:
//doi.org/10.1016/j.cose.2020.101873, URL http://www.sciencedirect.com/science/
article/pii/S0167404820301462

Hasegawa C, Iyatomi H (2018) One-dimensional convolutional neural networks for
android malware detection. In: 2018 IEEE 14th International Colloquium on Signal
Processing & Its Applications (CSPA), pp 99-102, https://doi.org/10.1109/CSPA.
2018.8368693

He K, Zhang X, Ren S, et al (2015) Deep residual learning for image recognition.
arXiv:1512.03385

He K, Zhang X, Ren S, et al (2016) Identity mappings in deep residual networks.
arXiv:1603.05027

He T, Zhang Z, Zhang H, et al (2018) Bag of tricks for image classification with
convolutional neural networks. arXiv:1812.01187

Hendrycks D, Gimpel K (2023) Gaussian error linear units (gelus). arXiv:1606.08415

Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

Huang THD, Kao HY (2018) R2-d2: Color-inspired convolutional neural network
(cnn)-based android malware detections. arXiv:1705.04448

Kalash M, Rochan M, Mohammed N, et al (2018) Malware classification with deep
convolutional neural networks. In: 2018 9th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pp 1-5, https://doi.org/10.1109/
NTMS.2018.8328749

Kim HI, Kang M, Cho SJ, et al (2022) Efficient deep learning network with multi-
streams for android malware family classification. IEEE Access 10:5518-5532. https:

23

https://doi.org/10.1109/COMSNETS53615.2022.9668396
https://doi.org/10.1109/TNSM.2021.3075315
https://doi.org/10.1109/TNSM.2021.3075315
https://arxiv.org/abs/2011.07682
https://api.semanticscholar.org/CorpusID:44430018
https://doi.org/https://doi.org/10.1016/j.cose.2020.101873
https://doi.org/https://doi.org/10.1016/j.cose.2020.101873
http://www.sciencedirect.com/science/article/pii/S0167404820301462
http://www.sciencedirect.com/science/article/pii/S0167404820301462
https://doi.org/10.1109/CSPA.2018.8368693
https://doi.org/10.1109/CSPA.2018.8368693
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1812.01187
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1705.04448
https://doi.org/10.1109/NTMS.2018.8328749
https://doi.org/10.1109/NTMS.2018.8328749
https://doi.org/10.1109/ACCESS.2021.3139334
https://doi.org/10.1109/ACCESS.2021.3139334

//doi.org/10.1109/ ACCESS.2021.3139334

Kim J, Paik JY, Cho ES (2023) Attention-based cross-modal cnn using non-
disassembled files for malware classification. IEEE Access 11:22889-22903. https:
//doi.org/10.1109/ACCESS.2023.3253770

Liu L, Wang Bs, Yu B, et al (2017) Automatic malware classification and new malware
detection using machine learning. Frontiers of Information Technology & Electronic
Engineering 18(9):1336-1347. https://doi.org/10.1631/FITEE.1601325, URL https:
//doi.org/10.1631/FITEE.1601325

Llauradé DG (2016) Convolutional neural networks for malware classification. URL
https://api.semanticscholar.org/CorpusID:22879106

Lu Q, Zhang H, Kinawi H, et al (2022) Self-attentive models for real-time malware
classification. IEEE Access 10:95970-95985. https://doi.org/10.1109/ACCESS.2022.
3202952

McLaughlin N, Martinez del Rincon J, Kang B, et al (2017) Deep android malware
detection. In: Proceedings of the Seventh ACM on Conference on Data and Applica-
tion Security and Privacy. Association for Computing Machinery, New York, NY,
USA, CODASPY ’17, p 301-308, https://doi.org/10.1145/3029806.3029823, URL
https://doi.org/10.1145/3029806.3029823

Mekruksavanich S, Jitpattanakul A (2022) Deep residual network for smartwatch-
based user identification through complex hand movements. Sensors 22:3094. https:
//doi.org/10.3390 /522083094

Mohaisen A, West AG, Mankin A, et al (2014) Chatter: Classifying malware families
using system event ordering. In: 2014 IEEE Conference on Communications and
Network Security, pp 283-291, https://doi.org/10.1109/CNS.2014.6997496

Nataraj L, Karthikeyan S, Jacob G, et al (2011a) Malware images: visualization
and automatic classification. In: Proceedings of the 8th International Symposium
on Visualization for Cyber Security. Association for Computing Machinery, New
York, NY, USA, VizSec 11, https://doi.org/10.1145/2016904.2016908, URL https:
//doi.org/10.1145/2016904.2016908

Nataraj L, Yegneswaran V, Porras P, et al (2011b) A comparative assessment of malware
classification using binary texture analysis and dynamic analysis. In: Proceedings
of the 4th ACM Workshop on Security and Artificial Intelligence. Association for
Computing Machinery, New York, NY, USA, AlSec '11, p 21-30, https://doi.org/
10.1145,/2046684.2046689, URL https: //doi.org/10.1145/2046684.2046689

Noever D, Noever SEM (2021) Virus-mnist: A benchmark malware dataset.
arXiv:2103.00602

24

https://doi.org/10.1109/ACCESS.2021.3139334
https://doi.org/10.1109/ACCESS.2021.3139334
https://doi.org/10.1109/ACCESS.2021.3139334
https://doi.org/10.1109/ACCESS.2023.3253770
https://doi.org/10.1109/ACCESS.2023.3253770
https://doi.org/10.1631/FITEE.1601325
https://doi.org/10.1631/FITEE.1601325
https://doi.org/10.1631/FITEE.1601325
https://api.semanticscholar.org/CorpusID:22879106
https://doi.org/10.1109/ACCESS.2022.3202952
https://doi.org/10.1109/ACCESS.2022.3202952
https://doi.org/10.1145/3029806.3029823
https://doi.org/10.1145/3029806.3029823
https://doi.org/10.3390/s22083094
https://doi.org/10.3390/s22083094
https://doi.org/10.1109/CNS.2014.6997496
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/2046684.2046689
https://doi.org/10.1145/2046684.2046689
https://doi.org/10.1145/2046684.2046689
https://arxiv.org/abs/2103.00602

Paik JY, Jin R, Cho ES (2022) Malware classification wusing a byte-
granularity =~ feature based on structural entropy. = Computational
Intelligence 38(4):1536-1558. https://doi.org/https://doi.org/10.1111/coin.
12521, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12521,
https://onlinelibrary.wiley.com/doi/pdf/10.1111/coin.12521

Priya V, Sathya Sofia A (2023) Review on malware classification and malware detection
using transfer learning approach. In: 2023 5th International Conference on Smart
Systems and Inventive Technology (ICSSIT), pp 1042-1049, https://doi.org/10.
1109/ICSSIT55814.2023.10061076

Rezende ERS, Ruppert GCS, de Carvalho TJ, et al (2018) Malicious software
classification using vggl6 deep neural network’s bottleneck features. URL https:
//api.semanticscholar.org/CorpusID:21388434

Ronen R, Radu M, Feuerstein C, et al (2018) Microsoft malware classification challenge.
arXiv:1802.10135

Safa H, Nassar M, Rahal Al Orabi WA (2019) Benchmarking convolutional and
recurrent neural networks for malware classification. In: 2019 15th International
Wireless Communications & Mobile Computing Conference (IWCMC), pp 561-566,
https://doi.org/10.1109/IWCMC.2019.8766515

Sathyanarayan V, Kohli P, Bezawada B (2008) Signature generation and detection of
malware families. pp 336349, https://doi.org/10.1007/978-3-540-70500-0 25

Schofield M (2021) Comparison of malware classification methods using convolutional
neural network based on api call stream. International Journal of Network Security
& Its Applications (IJNSA) 13(2). Available at SSRN: https://ssrn.com/abstract=
3822934

Schofield M, Alicioglu G, Binaco R, et al (2021) Convolutional neural network for
malware classification based on api call sequence. pp 85-98, https://doi.org/10.5121/
¢sit.2021.110106

Schultz MG, Eskin E, Zadok E, et al (2001) Data mining methods for
detection of new malicious executables. Proceedings of the IEEE Com-
puter Society Symposium on Research in Security and Privacy p 38 -
49. URL https://www.scopus.com/inward /record.uri?eid=2-52.0-0034838197&
partnerID=40&md5=388ce70cc320d3c766cada92elbl2cct, cited by: 840

Seneviratne S, Shariffdeen R, Rasnayaka S, et al (2022a) Self-supervised vision trans-
formers for malware detection. IEEE Access 10:103121-103135. https://doi.org/10.
1109/access.2022.3206445, URL http://dx.doi.org/10.1109/ ACCESS.2022.3206445

Seneviratne S, Shariffdeen R, Rasnayaka S, et al (2022b) Self-supervised vision trans-
formers for malware detection. IEEE Access 10:103121-103135. https://doi.org/10.

25

https://doi.org/https://doi.org/10.1111/coin.12521
https://doi.org/https://doi.org/10.1111/coin.12521
https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12521
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/coin.12521
https://doi.org/10.1109/ICSSIT55814.2023.10061076
https://doi.org/10.1109/ICSSIT55814.2023.10061076
https://api.semanticscholar.org/CorpusID:21388434
https://api.semanticscholar.org/CorpusID:21388434
https://arxiv.org/abs/1802.10135
https://doi.org/10.1109/IWCMC.2019.8766515
https://doi.org/10.1007/978-3-540-70500-0_25
https://ssrn.com/abstract=3822934
https://ssrn.com/abstract=3822934
https://doi.org/10.5121/csit.2021.110106
https://doi.org/10.5121/csit.2021.110106
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034838197&partnerID=40&md5=388ce70cc320d3c766cada92e1b12ccf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034838197&partnerID=40&md5=388ce70cc320d3c766cada92e1b12ccf
https://doi.org/10.1109/access.2022.3206445
https://doi.org/10.1109/access.2022.3206445
http://dx.doi.org/10.1109/ACCESS.2022.3206445
https://doi.org/10.1109/access.2022.3206445
https://doi.org/10.1109/access.2022.3206445

1109/access.2022.3206445, URL http://dx.doi.org/10.1109/ACCESS.2022.3206445

Votipka D, Rabin S, Micinski K, et al (2020) An observational investigation of reverse
Engineers’ processes. In: 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, pp 1875-1892, URL https://www.usenix.org/conference/
usenixsecurity20/presentation /votipka-observational

Wang L, Sun J, Luo X, et al (2021) Transferable features from 1d-convolutional network
for industrial malware classification. Computer Modeling in Engineering & Sciences
130:1003-1016. https://doi.org/10.32604 /cmes.2022.018492

Yeboah PN, Musah HBB (2022) Nlp technique for malware detection using 1d cnn
fusion model. Security and Communication Networks 2022:2957203. https://doi.org/
10.1155/2022,/2957203, URL https://doi.org/10.1155/2022,/2957203

Zyout M, Shatnawi R, Najadat H (2023) Malware classification approaches utilizing
binary and text encoding of permissions. International Journal of Information
Security 22(6):1687—1712. https://doi.org/10.1007/s10207-023-00712-z, URL https:
//doi.org/10.1007/s10207-023-00712-z

26

https://doi.org/10.1109/access.2022.3206445
https://doi.org/10.1109/access.2022.3206445
https://doi.org/10.1109/access.2022.3206445
http://dx.doi.org/10.1109/ACCESS.2022.3206445
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-observational
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-observational
https://doi.org/10.32604/cmes.2022.018492
https://doi.org/10.1155/2022/2957203
https://doi.org/10.1155/2022/2957203
https://doi.org/10.1155/2022/2957203
https://doi.org/10.1007/s10207-023-00712-z
https://doi.org/10.1007/s10207-023-00712-z
https://doi.org/10.1007/s10207-023-00712-z

	Introduction
	Related Works
	Malware Classification
	Byteplot Visualisation
	1D CNNs for Malware Classification

	Proposed Approach
	Data Processing and Resizing
	Converting Convolutions to One Dimension
	Model Architecture

	Evaluation
	Datasets
	Experimental Details
	Loss of Information in 2D Images
	Adapting Convolutions to 1D Data
	Comparison to Existing Models

	Additional Results and Ablations
	Choice of ResNet Architecture
	Effect of Model Stem
	Choice of Activation Function
	Choice of Resampling Filter
	Choice of Signal Length
	Parameter Sensitivity Analysis
	Precision Recall Trade-off

	Discussion and Conclusions

